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Abstract. We consider chains with an optical phonon spectrum and study the reduced density
matrices which occur in density-matrix renormalization group calculations. Both for one site and
for half of the chain, these are found to be exponentials of bosonic operators. Their spectra, which
are correspondingly exponential, are determined and discussed. The results for large systems are
obtained from the relation to a two-dimensional Gaussian model.

1. Introduction

The success of the density-matrix renormalization method (DMRG) in treating one-
dimensional quantum systems [1, 2] is closely related to the properties of the density matrices
involved. In this procedure, one determines the eigenvectors of these matrices and uses those
with the largest eigenvalues as a truncated basis. To be able to single out a relatively small
number, however, the density-matrix spectrum has to decrease rapidly enough. Indeed, it is
usually found in the numerical calculations that the eigenvalues decay roughly exponentially.

In a previous publication [3] it was pointed out that, for non-critical integrable models,
the exponential behaviour is ultimately a consequence of the Yang—Baxter equations. For
two spin—; models, the transverse Ising chain and the uniaxial Heisenberg chain, analytical
formulae were given and verified in detail in DMRG calculations.

In this paper, we want to extend these considerations to phonons, i.e. to a bosonic problem.
So far, comparatively few DMRG studies have dealt with bosons [4-11]. This differs from spin
systems in that the full Hilbert space always has infinite dimension. Therefore, any numerical
treatment has to start with a truncation. One can do this analogously to the DMRG procedure
by selecting local states via the density matrix for a single site [7]t. This is still a nontrivial
quantity with an infinite number of eigenstates in a full treatment, and it is interesting to find
its properties in a solvable case. The same holds, of course, for the more complicated density
matrix of a half-chain which is used in the DMRG algorithm.

The system we study is a purely bosonic model, a chaih barmonic oscillators with
frequencywy, coupled together by springs. It has a gap in the phonon spectrum and is a non-
critical integrable system just as the spin models mentioned above. We write the Hamiltonian

L 2 L-1

10 1 1

H = <_§ﬁ + §w§x2> + Ek(Xi-f-l - xi)z (1)
i=1 i j

t For a brief review, see Jeckelmanretalin [2].
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and will frequently use the formyg = 1 — k, so that fork = 0 there is no dispersion, while
for k — 1 the spectrum becomes acoustic and the system critical.

We first consider in section 2 the density maisixfor one oscillator and show that it can
always be written as the exponential of the Hamiltonian of a (hew) harmonic oscillator. The
spectrum, therefore, is purely exponential, with a decay rate dependingrmh (weakly) on
the chosen site. This generalizes the known result for thelcas@ [12]. The eigenfunctions
have the character of squeezed states and are used later for numerical calculations. In section 3,
we turn to the density matrixg,, for half of the system. We treat the case of small and large
L explicitly and find thato, has the same exponential form, with the number of oscillators
in the exponent determined by the size of the system. The result in the thermodynamic
limit is derived by relating the chain to a massive two-dimensional Gaussian model and its
corner transfer matrices (CTMs). It is very similar to that for the spin chains in [3] which
lead to fermionic operators instead of bosonic ones. In particular, the spectrum without the
degeneracies is purely exponential. Its form for different valuésamid different sizes of is
discussed in more detail in section 4, including numerical results obtained by truncation and
by DMRG calculations. These also illustrate to what extent the degeneracies are reproduced
in an approximate treatment. Finally, section 5 contains a summary and additional remarks.
Some details concerning the case= 4 and the Gaussian model are given in appendices A
and B.

2. Density matrix for one oscillator

In this section we consider the case where one oscillator is singled out and all others form the
environment. The corresponding density matrix (determined numerically) was used previously
in the study of an electron—phonon system [7]. Here, it can be found analytically.

The ground state aoff in (1) has the form

‘-If(a:)=C~eXp<—%ZAijxixj> 2)
ij
wherex = (x1, xo, ..., xz). The matrix
Aij = 0,0, )y (j) €)
q

is determined by the frequencies and the eigenvectoks, (i) of the normal modes. From
the total density matrix

px, x') = V(x)¥(z') (4)
one then obtains the reduced one for oscilldttwy integrating over all other coordinates
x; = x{. This leads to

’ 1 2 b N2 1 2
p1(x, x) = Cq - exp(—é(a — b)x; ) exp(—z(x, — X)) > exp(—i(a —b)x, ) (5)

with the constants

a = A]l (6)
b= Z AlADT A (7)
e

where A?) is the matrix obtained fromt by deleting theth row and column. The second
exponential in (5) can be transformed into a differential operator, giving

1., 192 1,,
p=Co- eXD(-zw y )EXD<§a—y2> exp(—Zw y (8)
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wherey? = bx?/2 andw?/4 = (a — b)/b. Writing this in terms of Bose operatass o', one
can bring it into diagonal form by an equation-of-motion method. The necessary Bogoljubov
transformation is

B = coshy - o +sinhd - o' (9)

with
2\ /4

¢ = (1 + %) . (10)
As a result, one finds that has the form

p1 =K - exp(—H) (11)
where

H=2ep"p (12)

is the Hamiltonian of a harmonic oscillator with energy

¢ = 2sinh (g) — 2sinh (\/m) . (13)

Therefore the eigenvaluesofarew, = Ke=*",n > 0, and the spectrumis purely exponential.
The constank follows from the sum rule o) = >, w, = 1.

This result is completely general. The details of the oscillating system and the position of
the chosen oscillator only enter via the ratit. The same constantsandb, also determine
the probability of finding a certain elongatian However, as seen fromy (x;, x;) in (5), this
quantity depends on the differenee-{ ») and thus has no direct relation4o

In the simplest case of two oscillators & 2) one finds explicitly

¢ = 2sinh? (\/4(01602/(@1 - a)z)z) (14)
or, equivalently,
e=In (coth2 (g)) (15)

wherew; = wg, wy =, /a)(z) + 2k are the two eigenfrequencies arfd e w,/w;. This is the
result obtained in a different way in [12].

In figure 1,¢ is shown as a function df, puttingwy = (1 — k). Fork — O it diverges
logarithmically. In this limit the influence of the second oscillator vanisdgs;) becomes a
product state and one is left with only one nonzero eigenvaljle- 1. Fork — 1, on the
other handg goes to zero ag/1 — k and the eigenvaluas, decrease only very slowly, which
reflects the strong coupling. These features are also encountered in all other cages: &or
one can still give explicit analytical formulae, but for largethe problem has to be treated
numerically. In figure 1, two additional casds,= 10 andL = 100, are shown. The limit
L — oo, which is approached exponentially inwith a correlation length increasing with
is indistinguishable froni. = 100 on the given scale.

One can also investigate havwaries with the position along the chain. The result for
several values df is shown in figure 2. One sees thais large at the ends. This corresponds
to the fact that the influence of the environment is smaller there. At the next site, however,
¢ drops and then approaches the bulk value from below as one moves into the interior. The
approach becomes slower/asicreases. The overall differences in thegalues are not very
large, though, as seen in figure 2.

Due to the form ofp,, its eigenstates are standard oscillator functions of a coordinate
which differs fromx; by a scale factor. Compared with the eigenfunctions of the uncoupled
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Figure 1. The eigenvalue in the density matrix for an Figure 2. The eigenvalue as a function of the position
oscillator at the end of a chain, as a functionkofor  of the oscillator, for a chain of. = 30 sites and three
different lengths. andwo = 1 — k. different values ok.

oscillator, they are squeezed states whose spatial extent is reduced by afactgiwg/v,

wherey = ./a(a — b). For smallk, ¢ approaches 1 and the two sets of functions coincide.
With increasingk, the amount of squeezing increases, and it is then advantageous to choose
the squeezed states as a local basis. This was done in the numerical calculations which are
given in section 4.

3. Density matrix for a half-chain

We now turn to the central quantity in the usual DMRG calculations, the reduced density matrix
for half of the system. It enters each time the system is enlarged in the infinite-size algorithm.
We will determine its spectrum in the two limits of small and lafge

For L = 2, one-half of the system is just one oscillator apthas already been obtained in
section 2. We therefore proceed immediately to the éased. First, we note that the square
root p,f/z follows directly fromW. If the coordinates along the chain &g, x1, x7, x5), one
has

pi' 21, x2; X}, Xp) = W (xg, X1, X5, X5). (16)
Taking into account the form (2) and the symmetries, this leads to
p,}/z =C- exp{ — %Zaij(xixj +x£x"i) — Zbijx,-x}} a7)
ij ij

where the symmetri¢2 x 2) matricesa;; andb;; follow from the matrixA of section 2.
Altogether one has six different coefficients which couple the variables as shown in the
following diagram:




Density matrices for a chain of oscillators 8423

The cross-couplings, shown as dotted lines, can be eliminated by introducing new
coodinatesy;, y;. Subsequently, a sequence of transformations similar to those in section 2
bring:s,o,f/2 (and thuso,) into diagonal form. Some of the details are given in appendix A. The

final result is thajp, also has the form (11) where now
2
H=3 &bb; (18)
j=1

describeswo harmonic oscillators with energies ande,. Thus, one obtains a simple
generalization of the case = 2. Also, the variation ok; with k is very similar to that

of ¢ in section 2. This is shown in figure 3, where both quantities are plotted. In particular,
one finds that they coincide in the limkit— 0. The ratios,/¢; equals 3 for smalt, drops to

a minimum of 2866 fork = 0.34 and then increases continuously, becaysa contrast to

&1, stays finite a& — 1. The shape of the spectrum, which depends on the #gtiq, will

be discussed in section 4.

At this stage one can already conjecture that the structysg also remains the same for
largerL. A direct computation as above does not seem feasible, though. In the limit of large
L, however, a different approach is possible. As in [3,15] one first reatés the partition
function of a two-dimensional classical system, which is a massive Gaussian model in our case,
in the form of an infinite strip of widti with a perpendicular cut. This connection is discussed
in more detail in appendix B. One then expresses the partition function as the product of four
corner transfer matrices. In the case whens much larger than the correlation length, one
can use the thermodynamic limit of these CTMs and fingfathe form (11), with an operator
H, which is very similar toH in (1). The coefficients, however, are multiplied by additional
site-dependent factors which increase linearly along the chain and reflect the corner geometry.
Upto a prefactor, itis the operator given in (B.5) in appendix B, and its diagonalization amounts
to finding the normal modes of the corresponding vibrational problem. From the results in [16]
one obtains

H=7 (2j - Dep)B; (19)
j>1
with
1K)

where (k) is the complete elliptic integral of the first kind ai#tl = +/1 — k2. Therefore
H describes an infinite set of harmonic oscillators with energjes= (2j — 1)e and is a
straightforward extension of the results for sniall

The parametet = ¢; is also shown in figure 3. Fdr — 0, it has exactly the same
expansion as for L = 2 ande; for L = 4. Fork — 1, it vanishes only logarithmically, i.e.
more slowly than the quantities for finife

One should note that the results (19), (20) are formally the same as for the transverse
Ising chain in the disordered phase [3]. The only difference is that there the opetagdrs
are fermionic (so thags™g = 0, 1), whereas here they are bosonic. Such similarities can also
be observed in the row transfer matrices of the Gaussian and the Ising model, if one uses the
corresponding parametrizations [17]. The consequences for the spectgyrarefdiscussed
below.
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Figure 3. The lowest eigenvalues in the density matrixFigure 4. The density-matrix spectrum fdt = 4 and
of a half-chain. Plotted arefor L = 2 ande; for L =4 five different values ok.
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Figure 5. The density-matrix spec- Figure 6. The density-matrix spectrum fdr = 0.5 and two sized.,
trum for L = 4 andk = 0.5, calcu- calculated with DMRG using 7 states and = 7. Also shown is the
lated with different numbers of oscil- analytical result fol. — oo.

lator states.

4. Spectra and numerics

In the following, we show the density-matrix spectra for half-chains and discuss some
numerical aspects. Infigures 4—6, the eigenvalygesf o, are ordered according to magnitude
and plotted on a semilogarithmic scale.

Figure 4 shows the spectra fbr= 4 and several values 6f These results were obtained
by calculating the two energies, e, numerically from the formulae in appendix A. Apart
from the rapid decrease, one notes a clear ladder structure for the smallegt thressults
from the relations, = 3e;1 which leads to the approximate degeneracied, 1, 2, 2, 2, 3)
for the first seven levels. The steps fo= 0.3 are less perfect, sineg deviates more from
3¢, in this case. For the two largests, = 4e; ande, = 6eq, SO that the first step appears at
these levels and the spectra look more stretched out.

It is interesting to see how these results are recovered in a numerical treatment using a
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truncated Hilbert space. If one works with the eigenstates;pfa small number (5-7) is
sufficient for not too largé. For example, ik = 0.5 and one chooses the samstates (with

some average-value) for all four sites, the error in the ground-state endtgyL is of the

order of 10". The spectra which then result are shown in figure 5 for three valuesTdie

first w, are always quite accurate, but there are characteristic differences for the following
ones, which are connected with the number of steps, i.e. with the degeneracies. One can see
that if » states are kept, the pattern is correct for the filgtvels (counted from the top). At

the next level, the state with energay is missing and the corresponding step is absent. Thus,
there is a certain correspondence between the states in the local basis and those in the density
matrix. For smalletw,, however, the situation is less clear, and the spectrum finally becomes
irregular. The tails of the approximate spectra always lie below the exact one.

In order to obtain results fot. > 4 as well, we have carried out DMRG calculations,
using seven states at each site, witkk @orresponding td. = 30. Withm = 7 kept states per
block, the error inEy/L was about 3< 10~/ for k = 0.5. Figure 6 shows the resulting spectra
for L = 6 andL = 14, together with the thermodynamic limit according to (19), (20). One
notes that the spectra for the tWioare similar, though not identical. Compared with= 4,
the degeneracies have changedltd, 1, 2, 2, 3, 4). The latter two result from a third energy
g3 = 5eq, which first appears foE = 6. Indeed, this shows that the number of oscillators in
pn is equal to the sizé /2 of the half-chain. One also sees that, fo= 14, the first two steps
have become perfect, so that= 3¢; as for the infinite system. Up to some small deviations,
this also holds for the next two steps. Only for the remaining levels 8 and 9, the degeneracies
are not correct. This is the same effect as found abové ter4.

For L = 14, theg; are also numerically very close to the largdimit. For example,
g1 agrees with the exact result0489 up to three decimal places. This can be understood
from the short correlation length ~ 3 for k = 0.5 which makes size effects small. Finally,
we want to mention that, in the thermodynamic limit, the multiplicities are just one-half of
those found in the fermionic case for the ordered phase whetre2¢; [3]. This is because
the number,P;, of partitions without repetition is the same as that of the odd integers with
repetition,P; = P,, ;. Therefore, the degeneracies for the bosonic case are not as large as
one might expect at first.

5. Conclusion

We have investigated a bosonic system, where the ground-state density matrices can be
determined explicitly in various cases. It turns out that they are exponentials of oscillator
Hamiltonians, so that all results are quite transparent. The spectra have exponential character
and the eigenfunctions are oscillator states. For the single-site density matrix, these states are
related to those of the chain oscillators by squeezing. For the half-chain density matrix, they
are connected with certain normal modes concentrated near the middle of the system. The
thermodynamic limit was obtained in the same way as for the integrable spin chains treated
previously, and the spectra are very similar to those found there. By counting the degeneracies,
one would arrive at formulae as given in [13].

Taking all this together, the chain treated here may serve as a standard example where
one can see the features of the density matrices in detail. In this context, it would still be
interesting to determine the half-chain density matrix for arbitrary sizes, in particular at the
critical point, where the vibrational spectrum becomes acoustic. This case has already been
studied by the DMRG [4] but, as for the critical spin models, the density-matrix spectra have
yetto be explained. Another question is whether the model of coupled oscillators, for which the
ground state is known explicitly, could be used to study density matrices in higher dimensions.
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For the DMRG method, it would be quite important to know if the spectral properties change
in this case.

Note added in prooflt is possible to generalize the procedure of section 2 so as to also give the half-chain density
matrix. This allows us to calculate spectra for arbitrary chains and to treat even two-dimensional systems. Details
will be reported elsewhere.
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Appendix A. Four oscillators

In order to diagonalizep;/2 in (17) one proceeds as follows. First, new coordinates are
introduced by a rotatiorixi, x2) — (y1, y2) with angleg and analogously for the primed
quantities. This leads to new quadratic forms in the exponent, with coeffiaigrﬂsudé,-j.
Choosing tan@ = 2by,/(b11 — b22), the cross-terni;» becomes zero. One then considers
the factors

A~ ~ A~ 2 .
exp(_%aiiyiz) exp(—bi;yiy}) exp(—3d;; yi°) i=12 (A1)
which contain only(y;, ¥';). These can be transformed as in section 2 and one obtains
exponentials of harmonic oscillators with energies

v = 2sinb }(Q;/2) (A.2)
where

Q;/2= \/(&ii +bii) [ (—2bi). (A.3)
In terms of the new coordinatesone then has
2 = C - exp(—pz1z2) exp( - Z < - %(f—; + %vizzl?)) exp(—pnziz2). (A.4)
Herez; = y;/Ai, i = d1oA142 and ther; are given by

= ( Vi )1/2 (1 +Q—"2>_1/4. (A.5)

—bii<2; 4

In the final step, one expresses (A.4) in terms of bosonic operaltouzﬁT and considers

Heisenberg-like operatorg’“; p; /%, which are found to be linear combinations of thec; .

Therefore, a transformation as in the analogous fermionic case [14]
Bi =D (gici +hjial) (A-6)

brings,o;/2 into the form (11), (18) with energies /2. These energies follow from a simple
quadratic equation, namely
8j 1 1
COShE = E(Cl +c) Z(Cl — C2)2 + 4p2S]_S2 (A?)
wherec; = coshy;, s; = sinhy; andp = u/2./v1vs.
These gquantities have to be evaluated, starting from the initial conataatsb; ;, which
are simple analytic expressions involving the four eigenfrequencies of the chain. It turns out
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that, for small values df, thep-termin (A.7) is unimportant, leading tg = 2v; ande, = 3e;.
The ratios, /e thus has the same value as in the thermodynamic limit. Moreeyégs the
same asymptotic forne; = 2In(4/k), as forL. = 2 andL — oo. This can be attributed to
the short correlation length which suppresses size effects in this limit.

Appendix B. Relation to the Gaussian model

The HamiltonianH in (1) has a close relation to the transfer matrix of a two-dimensional
Gaussian model (GM). The connection is the same as that between the transverse Ising chain
and the two-dimensional Ising model [3]. Consider a lattice with variableso < x < 00)

at each site, a nearest-neighbour coupling enédex — x’)? and an on-site energ%sz,

all in units of kg T. If the lattice is oriented diagonally, the appropriate transfer mafrix,
involves the piece shown in the diagram below:

’ ! /
Xi-1 X' X isl

Xi—1 Xi Xi+l

One can then verify by a simple direct calculation (using two interpenetrating lattices)
that, with periodic boundary conditions,

[H,T] =0 (B.1)

providedthat = K2andw3 = A(A+4K). Inthis caseT andH have common eigenfunctions
andv in (2) gives the maximal eigenvalue fdr This allows one to obtai¥ and alsq, from
the partition function of a two-dimensional system [3, 15]. If the GM has open boundaries,
one has to modifyd at the end, so as to preserve (B.1). However, for a systemiwjth &,
whereg is the correlation length given liy= 2/ In (1/ k), this effect is not important and can
be neglected.

An alternative approach is to consider a GM with anisotropic couplings for periodic
boundary conditions, to show that tiiefor different anisotropies commute and to realize that
a proper derivative leads 8 [18]. To do this, one uses an elliptic parametrization, so that the
two couplings are, for example,

K1 = —i/sn(iu, k) Ko = ik sn(iu, k) (B.2)

with the Jacobi function sn of moduliéts This parameter also determines the on-site energy
A and thus the distance to the critical poit= 0, as well as the correlation length. The
parametetz, on the other hand, specifies the rakig/K,. It varies between 0 and(k’),
where! is the complete elliptic integral of the first kind a#tl= +/1 — k2. The isotropic
case corresponds to= I (k")/2. (Our notation differs slightly from that in [18]. We have
interchanged < k', writtenu instead ofz8, usedx = +/A¢ for the Gaussian variables and
we have setr = —1.) The derivativgd In T /du) then leads again to (1) witlhg = (1 — k),
which is the reason for choosing this parametrizatiof/in

As discussed in [3], the density matrix for half of the system is, fof. > £ and up to a
prefactor,

Pn = ABCD (B3)
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whereA, B, C, D are the corner transfer matrices for the four infinite quadrants of the two-
dimensional system. Due to the integrability of the Gaussian model, i.e. the Yang—Baxter
equations, these have the exponential form

A= eiuHCTM (B.4)
and similarly forB, C, D, with Hctw given by

1 92 1
Hemv = Z { - 5(271 -D—

1
2.2 2
n>1 8)63 * E(Zn DA -k + Eznk(xml — X,) } (B.5)

This operator was studied in [16] in connection with the Hamiltonian limit 0 of A, where

one can determine its form simply by inspection. Itis associated with a corner of Ramond type,
i.e. without a site at the tip. In terms of vibrations, it describes a system of coupled oscillators,
where the spring constants and inverse masses increase along the chain. It can be diagonalized
with the help of Carlitz polynomials and then becomes the sum of harmonic oscillators with
eigenvalue$2; — 1) /21 (k'). For p, one needst BC D, or A% if one has an isotropic model.

In either case this gives a factof &’), so that the energy becomegs= (2j — 1)m I (k")/1 (k)

and one arrives at the result (19), (20).
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