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Abstract. We consider chains with an optical phonon spectrum and study the reduced density
matrices which occur in density-matrix renormalization group calculations. Both for one site and
for half of the chain, these are found to be exponentials of bosonic operators. Their spectra, which
are correspondingly exponential, are determined and discussed. The results for large systems are
obtained from the relation to a two-dimensional Gaussian model.

1. Introduction

The success of the density-matrix renormalization method (DMRG) in treating one-
dimensional quantum systems [1,2] is closely related to the properties of the density matrices
involved. In this procedure, one determines the eigenvectors of these matrices and uses those
with the largest eigenvalues as a truncated basis. To be able to single out a relatively small
number, however, the density-matrix spectrum has to decrease rapidly enough. Indeed, it is
usually found in the numerical calculations that the eigenvalues decay roughly exponentially.

In a previous publication [3] it was pointed out that, for non-critical integrable models,
the exponential behaviour is ultimately a consequence of the Yang–Baxter equations. For
two spin-12 models, the transverse Ising chain and the uniaxial Heisenberg chain, analytical
formulae were given and verified in detail in DMRG calculations.

In this paper, we want to extend these considerations to phonons, i.e. to a bosonic problem.
So far, comparatively few DMRG studies have dealt with bosons [4–11]. This differs from spin
systems in that the full Hilbert space always has infinite dimension. Therefore, any numerical
treatment has to start with a truncation. One can do this analogously to the DMRG procedure
by selecting local states via the density matrix for a single site [7]†. This is still a nontrivial
quantity with an infinite number of eigenstates in a full treatment, and it is interesting to find
its properties in a solvable case. The same holds, of course, for the more complicated density
matrix of a half-chain which is used in the DMRG algorithm.

The system we study is a purely bosonic model, a chain ofL harmonic oscillators with
frequencyω0, coupled together by springs. It has a gap in the phonon spectrum and is a non-
critical integrable system just as the spin models mentioned above. We write the Hamiltonian

H =
L∑
i=1

(
−1

2

∂2

∂x2
i

+
1

2
ω2

0x
2
i

)
+
L−1∑
i=1

1

2
k(xi+1− xi)2 (1)

† For a brief review, see Jeckelmann Eet al in [2].
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and will frequently use the formω0 = 1− k, so that fork = 0 there is no dispersion, while
for k→ 1 the spectrum becomes acoustic and the system critical.

We first consider in section 2 the density matrixρ1 for one oscillator and show that it can
always be written as the exponential of the Hamiltonian of a (new) harmonic oscillator. The
spectrum, therefore, is purely exponential, with a decay rate depending onk and (weakly) on
the chosen site. This generalizes the known result for the caseL = 2 [12]. The eigenfunctions
have the character of squeezed states and are used later for numerical calculations. In section 3,
we turn to the density matrixρh for half of the system. We treat the case of small and large
L explicitly and find thatρh has the same exponential form, with the number of oscillators
in the exponent determined by the size of the system. The result in the thermodynamic
limit is derived by relating the chain to a massive two-dimensional Gaussian model and its
corner transfer matrices (CTMs). It is very similar to that for the spin chains in [3] which
lead to fermionic operators instead of bosonic ones. In particular, the spectrum without the
degeneracies is purely exponential. Its form for different values ofk and different sizes ofL is
discussed in more detail in section 4, including numerical results obtained by truncation and
by DMRG calculations. These also illustrate to what extent the degeneracies are reproduced
in an approximate treatment. Finally, section 5 contains a summary and additional remarks.
Some details concerning the caseL = 4 and the Gaussian model are given in appendices A
and B.

2. Density matrix for one oscillator

In this section we consider the case where one oscillator is singled out and all others form the
environment. The corresponding density matrix (determined numerically) was used previously
in the study of an electron–phonon system [7]. Here, it can be found analytically.

The ground state ofH in (1) has the form

9(x) = C · exp

(
− 1

2

∑
ij

Aij xixj

)
(2)

wherex = (x1, x2, . . . , xL). The matrix

Aij =
∑
q

ωqφq(i)φq(j) (3)

is determined by the frequenciesωq and the eigenvectorsφq(i) of the normal modes. From
the total density matrix

ρ(x,x′) = 9(x)9(x′) (4)

one then obtains the reduced one for oscillatorl by integrating over all other coordinates
xi = x ′i . This leads to

ρ1(xl, x
′
l ) = C1 · exp

(
−1

2
(a − b)x2

l

)
exp

(
−b

4
(xl − x ′l )2

)
exp

(
−1

2
(a − b)x ′l2

)
(5)

with the constants

a = All (6)

b =
∑
i,j 6=l

Ali [A
(l)]−1

ij Ajl (7)

whereA(l) is the matrix obtained fromA by deleting thelth row and column. The second
exponential in (5) can be transformed into a differential operator, giving

ρ1 = C2 · exp

(
−1

4
ω2y2

)
exp

(
1

2

∂2

∂y2

)
exp

(
−1

4
ω2y2

)
(8)
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wherey2 = bx2
l /2 andω2/4= (a − b)/b. Writing this in terms of Bose operatorsα, α†, one

can bring it into diagonal form by an equation-of-motion method. The necessary Bogoljubov
transformation is

β = coshθ · α + sinhθ · α† (9)

with

eθ =
(

1 +
ω2

4

)1/4

. (10)

As a result, one finds thatρ1 has the form

ρ1 = K · exp(−H) (11)

where

H = εβ†β (12)

is the Hamiltonian of a harmonic oscillator with energy

ε = 2 sinh−1
(ω

2

)
= 2 sinh−1

(√
a/b − 1

)
. (13)

Therefore the eigenvalues ofρ1 arewn = Ke−εn,n > 0, and the spectrum is purely exponential.
The constantK follows from the sum rule Tr(ρ1) =

∑
n wn = 1.

This result is completely general. The details of the oscillating system and the position of
the chosen oscillator only enter via the ratioa/b. The same constants,a andb, also determine
the probability of finding a certain elongationxl . However, as seen fromρ1(xl, xl) in (5), this
quantity depends on the difference (a − b) and thus has no direct relation toε.

In the simplest case of two oscillators (L = 2) one finds explicitly

ε = 2 sinh−1
(√

4ω1ω2/(ω1− ω2)2
)

(14)

or, equivalently,

ε = ln
(
coth2

(η
2

))
(15)

whereω1 = ω0, ω2 =
√
ω2

0 + 2k are the two eigenfrequencies and e2η = ω2/ω1. This is the
result obtained in a different way in [12].

In figure 1,ε is shown as a function ofk, puttingω0 = (1− k). For k → 0 it diverges
logarithmically. In this limit the influence of the second oscillator vanishes,9(x) becomes a
product state and one is left with only one nonzero eigenvaluew0 = 1. Fork → 1, on the
other hand,ε goes to zero as

√
1− k and the eigenvalueswn decrease only very slowly, which

reflects the strong coupling. These features are also encountered in all other cases. ForL = 3
one can still give explicit analytical formulae, but for largerL the problem has to be treated
numerically. In figure 1, two additional cases,L = 10 andL = 100, are shown. The limit
L→∞, which is approached exponentially inL with a correlation length increasing withk,
is indistinguishable fromL = 100 on the given scale.

One can also investigate howε varies with the position along the chain. The result for
several values ofk is shown in figure 2. One sees thatε is large at the ends. This corresponds
to the fact that the influence of the environment is smaller there. At the next site, however,
ε drops and then approaches the bulk value from below as one moves into the interior. The
approach becomes slower ask increases. The overall differences in theε-values are not very
large, though, as seen in figure 2.

Due to the form ofρ1, its eigenstates are standard oscillator functions of a coordinatez

which differs fromxl by a scale factor. Compared with the eigenfunctions of the uncoupled
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Figure 1. The eigenvalueε in the density matrix for an
oscillator at the end of a chain, as a function ofk for
different lengthsL andω0 = 1− k.

Figure 2. The eigenvalueε as a function of the position
of the oscillator, for a chain ofL = 30 sites and three
different values ofk.

oscillatorl, they are squeezed states whose spatial extent is reduced by a factorq = √ω0/γ ,
whereγ = √a(a − b). For smallk, q approaches 1 and the two sets of functions coincide.
With increasingk, the amount of squeezing increases, and it is then advantageous to choose
the squeezed states as a local basis. This was done in the numerical calculations which are
given in section 4.

3. Density matrix for a half-chain

We now turn to the central quantity in the usual DMRG calculations, the reduced density matrix
for half of the system. It enters each time the system is enlarged in the infinite-size algorithm.
We will determine its spectrum in the two limits of small and largeL.

ForL = 2, one-half of the system is just one oscillator andρh has already been obtained in
section 2. We therefore proceed immediately to the caseL = 4. First, we note that the square
rootρ1/2

h follows directly from9. If the coordinates along the chain are(x2, x1, x
′
1, x
′
2), one

has

ρ
1/2
h (x1, x2; x ′1, x ′2) = 9(x2, x1, x

′
1, x
′
2). (16)

Taking into account the form (2) and the symmetries, this leads to

ρ
1/2
h = C · exp

{
− 1

2

∑
ij

aij (xixj + x ′ix
′
j )−

∑
ij

bij xix
′
j

}
(17)

where the symmetric(2 × 2) matricesaij andbij follow from the matrixA of section 2.
Altogether one has six different coefficients which couple the variables as shown in the
following diagram:
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The cross-couplings, shown as dotted lines, can be eliminated by introducing new
coodinatesyi, y ′i . Subsequently, a sequence of transformations similar to those in section 2
bringsρ1/2

h (and thusρh) into diagonal form. Some of the details are given in appendix A. The
final result is thatρh also has the form (11) where now

H =
2∑
j=1

εjβ
†
j βj (18)

describestwo harmonic oscillators with energiesε1 and ε2. Thus, one obtains a simple
generalization of the caseL = 2. Also, the variation ofε1 with k is very similar to that
of ε in section 2. This is shown in figure 3, where both quantities are plotted. In particular,
one finds that they coincide in the limitk→ 0. The ratioε2/ε1 equals 3 for smallk, drops to
a minimum of 2.866 fork = 0.34 and then increases continuously, becauseε2, in contrast to
ε1, stays finite ask → 1. The shape of the spectrum, which depends on the ratioε2/ε1, will
be discussed in section 4.

At this stage one can already conjecture that the structure ofρh also remains the same for
largerL. A direct computation as above does not seem feasible, though. In the limit of large
L, however, a different approach is possible. As in [3, 15] one first relatesρh to the partition
function of a two-dimensional classical system, which is a massive Gaussian model in our case,
in the form of an infinite strip of widthLwith a perpendicular cut. This connection is discussed
in more detail in appendix B. One then expresses the partition function as the product of four
corner transfer matrices. In the case whereL is much larger than the correlation length, one
can use the thermodynamic limit of these CTMs and find forρh the form (11), with an operator
H, which is very similar toH in (1). The coefficients, however, are multiplied by additional
site-dependent factors which increase linearly along the chain and reflect the corner geometry.
Up to a prefactor, it is the operator given in (B.5) in appendix B, and its diagonalization amounts
to finding the normal modes of the corresponding vibrational problem. From the results in [16]
one obtains

H =
∑
j>1

(2j − 1)εβ†
j βj (19)

with

ε = π I (k
′)

I (k)
(20)

whereI (k) is the complete elliptic integral of the first kind andk′ = √1− k2. Therefore
H describes an infinite set of harmonic oscillators with energiesεj = (2j − 1)ε and is a
straightforward extension of the results for smallL.

The parameterε ≡ ε1 is also shown in figure 3. Fork → 0, it has exactly the same
expansion asε for L = 2 andε1 for L = 4. Fork → 1, it vanishes only logarithmically, i.e.
more slowly than the quantities for finiteL.

One should note that the results (19), (20) are formally the same as for the transverse
Ising chain in the disordered phase [3]. The only difference is that there the operatorsβ, β†

are fermionic (so thatβ†β = 0, 1), whereas here they are bosonic. Such similarities can also
be observed in the row transfer matrices of the Gaussian and the Ising model, if one uses the
corresponding parametrizations [17]. The consequences for the spectrum ofρh are discussed
below.
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Figure 3. The lowest eigenvalues in the density matrix
of a half-chain. Plotted areε for L = 2 andε1 for L = 4
andL = ∞.

Figure 4. The density-matrix spectrum forL = 4 and
five different values ofk.

Figure 5. The density-matrix spec-
trum for L = 4 andk = 0.5, calcu-
lated with different numbers of oscil-
lator states.

Figure 6. The density-matrix spectrum fork = 0.5 and two sizesL,
calculated with DMRG using 7 states andm = 7. Also shown is the
analytical result forL→ ∞.

4. Spectra and numerics

In the following, we show the density-matrix spectra for half-chains and discuss some
numerical aspects. In figures 4–6, the eigenvalueswn of ρh are ordered according to magnitude
and plotted on a semilogarithmic scale.

Figure 4 shows the spectra forL = 4 and several values ofk. These results were obtained
by calculating the two energiesε1, ε2 numerically from the formulae in appendix A. Apart
from the rapid decrease, one notes a clear ladder structure for the smallest threek. It results
from the relationε2

∼= 3ε1 which leads to the approximate degeneracies(1, 1, 1, 2, 2, 2, 3)
for the first seven levels. The steps fork = 0.3 are less perfect, sinceε2 deviates more from
3ε1 in this case. For the two largestk, ε2

∼= 4ε1 andε2
∼= 6ε1, so that the first step appears at

these levels and the spectra look more stretched out.
It is interesting to see how these results are recovered in a numerical treatment using a
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truncated Hilbert space. If one works with the eigenstates ofρ1, a small number (5–7) is
sufficient for not too largek. For example, ifk = 0.5 and one chooses the samer states (with
some averageε-value) for all four sites, the error in the ground-state energyE0/L is of the
order of 10−r . The spectra which then result are shown in figure 5 for three values ofr. The
first wn are always quite accurate, but there are characteristic differences for the following
ones, which are connected with the number of steps, i.e. with the degeneracies. One can see
that if r states are kept, the pattern is correct for the firstr levels (counted from the top). At
the next level, the state with energyrε1 is missing and the corresponding step is absent. Thus,
there is a certain correspondence between the states in the local basis and those in the density
matrix. For smallerwn, however, the situation is less clear, and the spectrum finally becomes
irregular. The tails of the approximate spectra always lie below the exact one.

In order to obtain results forL > 4 as well, we have carried out DMRG calculations,
using seven states at each site, with anε corresponding toL = 30. Withm = 7 kept states per
block, the error inE0/L was about 3× 10−7 for k = 0.5. Figure 6 shows the resulting spectra
for L = 6 andL = 14, together with the thermodynamic limit according to (19), (20). One
notes that the spectra for the twoL are similar, though not identical. Compared withL = 4,
the degeneracies have changed to(1, 1, 1, 2, 2, 3, 4). The latter two result from a third energy
ε3
∼= 5ε1, which first appears forL = 6. Indeed, this shows that the number of oscillators in

ρh is equal to the sizeL/2 of the half-chain. One also sees that, forL = 14, the first two steps
have become perfect, so thatε2 = 3ε1 as for the infinite system. Up to some small deviations,
this also holds for the next two steps. Only for the remaining levels 8 and 9, the degeneracies
are not correct. This is the same effect as found above forL = 4.

For L = 14, theεj are also numerically very close to the large-L limit. For example,
ε1 agrees with the exact result 4.0189 up to three decimal places. This can be understood
from the short correlation lengthξ ∼ 3 for k = 0.5 which makes size effects small. Finally,
we want to mention that, in the thermodynamic limit, the multiplicities are just one-half of
those found in the fermionic case for the ordered phase whereεj = 2εj [3]. This is because
the number,Pj , of partitions without repetition is the same as that of the odd integers with
repetition,Pj = P ′2j−1. Therefore, the degeneracies for the bosonic case are not as large as
one might expect at first.

5. Conclusion

We have investigated a bosonic system, where the ground-state density matrices can be
determined explicitly in various cases. It turns out that they are exponentials of oscillator
Hamiltonians, so that all results are quite transparent. The spectra have exponential character
and the eigenfunctions are oscillator states. For the single-site density matrix, these states are
related to those of the chain oscillators by squeezing. For the half-chain density matrix, they
are connected with certain normal modes concentrated near the middle of the system. The
thermodynamic limit was obtained in the same way as for the integrable spin chains treated
previously, and the spectra are very similar to those found there. By counting the degeneracies,
one would arrive at formulae as given in [13].

Taking all this together, the chain treated here may serve as a standard example where
one can see the features of the density matrices in detail. In this context, it would still be
interesting to determine the half-chain density matrix for arbitrary sizes, in particular at the
critical point, where the vibrational spectrum becomes acoustic. This case has already been
studied by the DMRG [4] but, as for the critical spin models, the density-matrix spectra have
yet to be explained. Another question is whether the model of coupled oscillators, for which the
ground state is known explicitly, could be used to study density matrices in higher dimensions.
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For the DMRG method, it would be quite important to know if the spectral properties change
in this case.

Note added in proof. It is possible to generalize the procedure of section 2 so as to also give the half-chain density
matrix. This allows us to calculate spectra for arbitrary chains and to treat even two-dimensional systems. Details
will be reported elsewhere.
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Appendix A. Four oscillators

In order to diagonalizeρ1/2
h in (17) one proceeds as follows. First, new coordinates are

introduced by a rotation(x1, x2) → (y1, y2) with angleϕ and analogously for the primed
quantities. This leads to new quadratic forms in the exponent, with coefficientsâij and b̂ij .
Choosing tan 2ϕ = 2b12/(b11− b22), the cross-term̂b12 becomes zero. One then considers
the factors

exp(− 1
2 âiiy

2
i ) exp(−b̂iiyiy ′i ) exp(− 1

2 âiiy
′
i

2
) i = 1, 2 (A.1)

which contain only(yi, y ′i ). These can be transformed as in section 2 and one obtains
exponentials of harmonic oscillators with energies

νi = 2 sinh−1(�i/2) (A.2)

where

�i/2=
√
(âii + b̂ii )/(−2b̂ii ). (A.3)

In terms of the new coordinateszi one then has

ρ
1/2
h = C · exp(−µz1z2) exp

(
−
∑
i

(
− 1

2

∂2

∂z2
i

+
1

2
ν2
i z

2
i

))
exp(−µz1z2). (A.4)

Herezi = yi/λi , µ = â12λ1λ2 and theλi are given by

λi =
(

νi

−b̂ii�i

)1/2(
1 +

�2
i

4

)−1/4

. (A.5)

In the final step, one expresses (A.4) in terms of bosonic operatorsαi, α
†
i and considers

Heisenberg-like operatorsρ1/2
h αiρ

−1/2
h , which are found to be linear combinations of theαi, α

†
i .

Therefore, a transformation as in the analogous fermionic case [14]

βj =
∑
i

(gjiαi + hjiα
†
i ) (A.6)

bringsρ1/2
h into the form (11), (18) with energiesεj /2. These energies follow from a simple

quadratic equation, namely

cosh
εj

2
= 1

2
(c1 + c2)±

√
1

4
(c1− c2)2 + 4ρ2s1s2 (A.7)

whereci = coshνi , si = sinhνi andρ = µ/2√ν1ν2.

These quantities have to be evaluated, starting from the initial constantsaij andbij , which
are simple analytic expressions involving the four eigenfrequencies of the chain. It turns out
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that, for small values ofk, theρ-term in (A.7) is unimportant, leading toεj
∼= 2νj andε2

∼= 3ε1.
The ratioε2/ε1 thus has the same value as in the thermodynamic limit. Moreover,ε1 has the
same asymptotic form,ε1

∼= 2 ln(4/k), as forL = 2 andL→ ∞. This can be attributed to
the short correlation length which suppresses size effects in this limit.

Appendix B. Relation to the Gaussian model

The HamiltonianH in (1) has a close relation to the transfer matrix of a two-dimensional
Gaussian model (GM). The connection is the same as that between the transverse Ising chain
and the two-dimensional Ising model [3]. Consider a lattice with variablesx(−∞ < x <∞)
at each site, a nearest-neighbour coupling energy1

2K(x − x ′)2 and an on-site energy121x
2,

all in units of kBT . If the lattice is oriented diagonally, the appropriate transfer matrix,T ,
involves the piece shown in the diagram below:

One can then verify by a simple direct calculation (using two interpenetrating lattices)
that, with periodic boundary conditions,

[H, T ] = 0 (B.1)

provided thatk = K2 andω2
0 = 1(1+4K). In this case,T andH have common eigenfunctions

and9 in (2) gives the maximal eigenvalue forT . This allows one to obtain9 and alsoρh from
the partition function of a two-dimensional system [3, 15]. If the GM has open boundaries,
one has to modifyH at the end, so as to preserve (B.1). However, for a system withL � ξ ,
whereξ is the correlation length given byξ = 2/ ln (1/k), this effect is not important and can
be neglected.

An alternative approach is to consider a GM with anisotropic couplings for periodic
boundary conditions, to show that theT for different anisotropies commute and to realize that
a proper derivative leads toH [18]. To do this, one uses an elliptic parametrization, so that the
two couplings are, for example,

K1 = −i/ sn(iu, k) K2 = ik sn(iu, k) (B.2)

with the Jacobi function sn of modulusk. This parameter also determines the on-site energy
1 and thus the distance to the critical point1 = 0, as well as the correlation length. The
parameteru, on the other hand, specifies the ratioK1/K2. It varies between 0 andI (k′),
whereI is the complete elliptic integral of the first kind andk′ = √1− k2. The isotropic
case corresponds tou = I (k′)/2. (Our notation differs slightly from that in [18]. We have
interchangedk ↔ k′, writtenu instead ofλθ , usedx = √λφ for the Gaussian variables and
we have setα = −1.) The derivative(∂ ln T/∂u) then leads again to (1) withω0 = (1− k),
which is the reason for choosing this parametrization inH .

As discussed in [3], the density matrixρh for half of the system is, forL� ξ and up to a
prefactor,

ρh = ABCD (B.3)
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whereA,B,C,D are the corner transfer matrices for the four infinite quadrants of the two-
dimensional system. Due to the integrability of the Gaussian model, i.e. the Yang–Baxter
equations, these have the exponential form

A = e−uHCTM (B.4)

and similarly forB,C,D, withHCTM given by

HCTM =
∑
n>1

{
− 1

2
(2n− 1)

∂2

∂x2
n

+
1

2
(2n− 1)(1− k)2x2

n +
1

2
2nk(xn+1− xn)2

}
. (B.5)

This operator was studied in [16] in connection with the Hamiltonian limitu→ 0 ofA, where
one can determine its form simply by inspection. It is associated with a corner of Ramond type,
i.e. without a site at the tip. In terms of vibrations, it describes a system of coupled oscillators,
where the spring constants and inverse masses increase along the chain. It can be diagonalized
with the help of Carlitz polynomials and then becomes the sum of harmonic oscillators with
eigenvalues(2j − 1)π/2I (k′). Forρh one needsABCD, orA4 if one has an isotropic model.
In either case this gives a factor 2I (k′), so that the energy becomesεj = (2j −1)πI (k′)/I (k)
and one arrives at the result (19), (20).
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